5y^2+35=125

Simple and best practice solution for 5y^2+35=125 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5y^2+35=125 equation:



5y^2+35=125
We move all terms to the left:
5y^2+35-(125)=0
We add all the numbers together, and all the variables
5y^2-90=0
a = 5; b = 0; c = -90;
Δ = b2-4ac
Δ = 02-4·5·(-90)
Δ = 1800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1800}=\sqrt{900*2}=\sqrt{900}*\sqrt{2}=30\sqrt{2}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-30\sqrt{2}}{2*5}=\frac{0-30\sqrt{2}}{10} =-\frac{30\sqrt{2}}{10} =-3\sqrt{2} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+30\sqrt{2}}{2*5}=\frac{0+30\sqrt{2}}{10} =\frac{30\sqrt{2}}{10} =3\sqrt{2} $

See similar equations:

| (3*x)/4-2*x-30+40=0 | | 5y^2+35=135 | | X+18|2=5x | | (3x)^20=5x-1 | | 8(k+7)-(k+5)=40 | | X+5=10+5x | | 2(6x-1)=3(4x+8) | | X/4+7=10+x | | 3x/3=18/2 | | 3x=18/2 | | 5(y-3)=3(y-11) | | 3x*3=18/2 | | -9x-1=10x | | -2x-7=-4x+3 | | 5x+14=18-7x | | -4x+1=5x-3 | | 9x-11=15-3x | | 7(x-5)+5=3(x-5)+5 | | (10x/100)x=2350 | | X=5x-250 | | 8=t/3.1-2 | | 4-10y+6y=24 | | (2x+1)(2x+1)=(4x-1)(x+1) | | 2p=p+11 | | 11=s/4.5 | | 11=s4.5 | | 6(-3m+7)=66 | | -2(13x-1)+9(3x-3)-4=5-8 | | 6-15y+6y=24 | | -8*y=2 | | 9x^2+20x+23=0 | | -1/4=y-5/8 |

Equations solver categories